

Unit 3E: Magnets and Springs

Learnanywhere

Learnanywhere

Magnets and Springs

Unit 3E: Magnets and Springs

Unit 3E: Vocabulary

Useful Words

Learnanywhere

webanywhere

Magnetic Non Magnetic Attraction / Attract **Repulsion / Repel Bar Magnet** Horseshoe Magnet **Ring Magnet** Iron Aluminium Poles

A material that will be attracted to a magnet A material that will not be attracted to a magnet

- A FORCE pulling two objects together
- A FORCE pushing two objects apart
- A straight bar-shaped magnet
- A horseshoe shaped magnet, the two ends are the poles
- A doughnut shaped magnet, the two faces are the poles
- A metal which is magnetic A metal which is non-magnetic
- The two ends of a magnet

Opposite poles **attract** each other

Like poles repel each other

Unit 3E: Forces Between Magnets: L.O. 1, 2, 3 : NC: 4.2a

Unit 3E: Magnetic or Non Magnetic?

Learnanywhere

Which objects are magnetic?

	Magnetic	Non Magnetic
Tennis ball		
Screw		
Shoe		
Marker Pen		
Keys		
Scissors		
Sweets		

Unit 3E: Magnetic or Non Magnetic? : L.O. 4, 5, 6, 7 : NC. 4.2a

Unit 3E: Uses of Magnets

Learnanywhere

Unit 3E: Uses of Magnets: L.O. 8

webanywhen

- 1. How can we find out which magnet is the strongest?
- 2. What equipment will we need?
- 3. How will we know which magnet is strongest?
- 4. How will we record our results?

Results Table

Magnet	Number of paperclips picked up
Magnet A	
Magnet B	
Magnet C	
Magnet D	

Learnanywhere

Unit 3E: Uses of Springs: L.O. 13

Learnanywhere

Unit 3E: How Springs Work: L.O. 14, 15 : NC. 4.2 d

webanywhen

What do you think will happen if the catapult is pulled back further?

Test what happens when the catapult is pulled back by different amounts.

Unit 3E: How Springs Work: L.O. 16 : NC. 4.2 d, e, 1.2 d, e, f, g, h, j, l

Distance catapult pulled back	Distance car travelled
2 cm	
4 cm	
6 cm	
8 cm	
10 cm	

The car travelled furthest when we pulled it back _____ cm

This tells us that when the car is pulled back further, the force from the elastic bands is _____

Can you explain why the results showed this?

Unit 3E: Investigating Elastic Bands: Results: L.O. 17,18,19 : NC. 4.2 d,e, 1.2 l

Unit 3E: Summary

Learnanywhere

webanywhere 🕓

